

Tencent Academic and Industrial Conference

Changwang ZHANG

IJCAI-19, Macau SAR, China August 13, 2019

Tencent 腾讯

Big-data Mining Using Unsupervised Learning and Graph Learning

Technology and Engineering Group (TEG)

- Key values:
 - Develop core/cutting-edge technologies/platforms for the whole company
 - Support a broad range of applications
 - Advance the state of the art and impact the world

Outline

- Unsupervised short text hierarchical classification
- Point-of-interest (POI) matching based on domain knowledge
- Large-scale graph mining and learning

Unsupervised short text hierarchical classification

An user vs. Al Master

Al is changing the world, Al is beating humans ...

Wow, please help me do a three-level text classification

Ok. You have 800 classes then provide 8 million labelled data to train the model...

Al Master requires too much labelled data!

"robot cat" is misclassified as "pets" can I help you rectify that?

You human want to modify a model with millions of parameters? No way! Go and label more data...

Al Master is not controllable by the user

What can I do if I want to adjust the meaning and levels of the targeted categories?

You can do nothing but to re-label 2 million data to further train the model

Al Master is not easily adaptive

Al master depends on massive human effort in labelling!

What is the problem and the solution?

The Problem:

Al Master requires too much labelled data! Al Master is not controllable by the user Al Master is not easily adaptive Al Master is not easily adaptive Al Master is not easily adaptive Al Master is not easily adaptive

The Solution:

Unsupervised short text hierarchical classification algorithm based on keyword and category knowledge

The knowledge

Keyword knowledge:

Keyword web search context

Keyword encyclopedia context

Keyword to category word posterior correlation probability

Unlabele	d Item	Labeled Item					
lter	n	lt	em	label			
烟台红 (Yantai Re	富士 ed Fuji)	烟台 (Yantai	红富士 Red Fuji)	生鲜>>水果>>苹果 (Fresh>>Fruit>>App	ŧ le)		
L	_	T T					
(Poste	erior pi	obabili	tv			
	P(.,			
1	$P(w_{c} \mid w_{k}) = \frac{P(w_{c})}{P(w_{c})}$	$\frac{P(W_k W_c)}{P(W)}$					
	The number of	items cont	ining w in	category C			
=	The total r	number of i	tems contain	ning w,			
		1					
Keyword	Category	word	Correl	lation probabilit	у		
Red Fuji	Fresh	i		0.85			
Red Fuji	Fruit			0.90			
Red Fuji	Apple		0.98				
Walmart	Pigeon e	egg		0.18			

No dependence on massive human labelled data

Category knowledge:

Category name	Category expression	Category priority
Pet-Cat	Pet>>Cat	1
Pet-Dog	Pet>>Dog	1
Pet-Other	Pet>>\$other\$	1

No cartoon characters in pets Leopards are big cats No husky in dogs Prefer dogs over other pets

Category name	Category expression	Category priority
Pet-Cat	Pet-Cartoon>>Cat+Leopard	1
Pet-Dog	Pet-Cartoon>>Dog-Husky	1.5
Pet-Other	Pet-Cartoon>>\$other\$	1

Understandable, adaptable and controllable by the user

The algorithm

Item Keyword + Category knowledge

Item Data Unlabeled data ID text 精装富士苹果 11 (Hardcover Fuji apple) Word segmentation and keyword 富士拍立得 extraction 12 Category knowledge (Fuji Polaroid) Category **Category name** Category expression ID Priority Keyword knowledge Keyword analysis 生鲜>>水果>>苹果 生鲜-水果-苹果 1 matching C1 (Fresh - Fruit - Apple) (Fresh>>Fruit>>Apple) Keyword web search context Keyword correlation 电子产品-摄影摄像-照相机 电子产品>>摄影摄像>>照相机 1 calculation C2 (Electronics - Photo Camera - Camera) (Electronics>>Photo Camera>>Camera) Keyword encyclopedia context Keyword to category word posterior correlation probability Matching result Generating correlation vector C1 C2 Word correlation vector 1.5 0.7 11 Apple Camera 12 0.6 1.4 ... Get matching topN 0.2 apple 1 categories Polaroid 0.1 0.9 ... Fuji 0.5 0.5

Item category

Experimental setup

Datasets:

Point of interest (POI) name classification

Items	Labels
经典发型沙龙 (Classic hair salon)	生活服务:美容美发:美发 (Life service: beauty salon: hairdressing)
森马	购物:服饰鞋包
(Semir)	(Shopping: dress shoes bag)
华美通科技	公司企业:公司企业
(Huameitong Technology)	(Enterprise: company)

Total classes: 351 / Total levels: 3

Algorithms:

Supervised methods: BERT fine-tuning

eCommerce item name classification

Items	Labels
华为mate 20 pro钢化膜全屏彩膜贴膜 (Huawei mate 20 pro tempered film full screen color)	手机:手机配件:手机贴膜 (Mobile phone: mobile phone accessories: mobile phone film)
YONEX 尤尼克斯YY羽毛球长裤 (YONEX Yonex YY badminton trousers)	运动户外:体育用品:羽毛球服 (Sports Outdoor: Sporting Goods: Badminton Wear)
盐焗腰果 400克 (Salted cashew nuts 400g)	食品饮料:休闲食品:坚果炒货 (Food Beverage: Snack Food: Nuts Roasted)
T 1 1 1 1	

Total classes: 4234 / Total levels: 3

Unsupervised methods: word2Vec+cosine similarity

Experimental results

Dataset	Model	First level category		Secor	Second level category		Third level category			
		Р	R	F	P	R	F	Р	R	F
	Bert word vector+Cosine	60%	58%	59%	28%	27%	27%	23%	16%	19%
	Tencent AI Lab word vector+Cosine	65%	65%	65%	40%	40%	40%	29%	33%	31%
The second se	Our method	81%	28%	42%	59%	20%	30%	50%	15%	23%
Point of interest (POI) name – –	Our method (Knowledge on 1k training data)	85%	42%	56%	61%	31%	41%	59%	29%	39%
	Our method (Knowledge on 10k training data)	87%	55%	67%	61%	39%	48%	59%	39%	48%
	BERT fine-tuning (1k training data)	17%	17%	17%	2.4%	2.4%	2.4%	0.5%	1.7%	0.8%
	BERT fine-tuning (10k training data)	83%	83%	83%	66%	66%	66%	61%	58%	60%
and the second	Bert word vector+Cosine	49%	49%	49%	30%	30%	30%	7%	7%	7%
	Tencent AI Lab word vector+Cosine	68%	68%	68%	46%	46%	46%	15%	15%	15%
	Our method	80%	80%	80%	66%	65%	66%	47%	46%	46%
eCommerce item name -	Our method (Knowledge on 1k training data)	81%	81%	81%	66%	65%	66%	47%	46%	46%
	Our method (Knowledge on 10k training data)	84%	84%	84%	70%	70%	70%	50%	49%	50%
	BERT fine-tuning (1k training data)	31%	31%	31%	14%	14%	14%	2.2%	2.2%	2.2%
	BERT fine-tuning (10k training data)	80%	80%	80%	71%	71%	71%	53%	53%	53%

Some final thoughts

- Category knowledge can help effectively filter inaccurate instances and improve classification accuracy.
- Keyword web search and encyclopedia context is helpful in understanding the semantics of short text.
- Keyword to category word posterior correlation probability supplements the classifier with the domain knowledge in item samples.

Point-of-interest (POI) matching based on domain knowledge

Point-of-interest (POI) matching

Classic methods-Unsupervised matching

Experimental datasets:

- Set1: 8,071 POIs Set2: 4,799 POIs / Matched POI pairs: 2,631
- 75% used for training, 25% used for the test

Classic methods-Supervised classification POI Set1 POI Set2 P2: 0.064815, -0.121840894,, 0.18656228 3 2 512 Training samples BERT Training ... 512 name, type Predicting Classifier SVM, MLP, XGBoost, etc. id longitude latitude name type Life Service; Laundry; **Fornet Laundry** 114.93517 22.099756 P1 (Hyde 3rd Road) Laundry Accommodation service; Shenzhen P2 113.44935 22.529044 Kempinski Hotel Hotel; Five-star Hotel Method Accuracy MLP 55.71% SVM 72.00% XGBoost 55.53%

More recent methods-Match net

Text matching

Extracting meaningful matching patterns from words, phrases, and sentences to produce the matching score.

Sentences of POI: "name, type"

- Sentence 1: Coastal City Shopping Center, Shopping: Shopping Malls
- Sentence 2: Coastal City, Shopping Service: Shopping Mall: Ordinary Shopping Mall

Method	Input layer	Representation layer	Match layer	Accuracy
DSSM	text	MLP	Cosine	57.66%
BERT fine-tuning	text	Transformer	and the second	73.92%

Problems and our solution

Problems:

- Classic unsupervised methods have low accuracy.
- Existing supervised methods have low accuracy due to inadequate training samples.
- BERT fine-tuning is way too slow in training and prediction.

Our solution:

- Reducing reliance on massive training samples by incorporating domain knowledge in the model.
- Using pre-trained BERT vectors and triplet loss for the model instead of BERT fine-tuning.

Method	Input layer	Representation layer	Match layer	Accuracy
Cosine	BERT pre-trained vectors	-	Cosine	60.35%
MLP	BERT pre-trained vectors	MLP	Softmax	55.71%
SVM	BERT pre-trained vectors	2335 7 771111		72.00%
XGBoost	BERT pre-trained vectors	27/ 1 /////	111141113	55.53%
DSSM	text	MLP	Cosine	57.66%
BERT fine-tuning	text	Transformer		73.92%

Our method

POI Representation Net v1

Triplet loss

 $L = \max(0, margin - (d(r, n) - d(r, p)))$

Directly compare the distance between the embedding rather than the matched results.

POI Representation Net v2 (+Domain Knowledge)

The spatial attribute is a key • characteristic of geospatial big data.

Administrative area

name knowledge

深圳市 (Shenzhen City)

南山区 (Nanshan District)

广州市 (Guangzhou City)

Results and Conclusion

Method	Input Layer	Representation Layer	Matching Layer	Accuracy
Cosine Matching	BERT pre-trained vectors		Cosine	60.35%
Cosine Matching (+Domain Knowledge)	BERT pre-trained vectors		Cosine	70.54%
MLP	BERT pre-trained vectors	MLP	Softmax	55.71%
SVM	BERT pre-trained vectors			72.00%
XGBoost	BERT pre-trained vectors			55.53%
DSSM	text	MLP	Cosine	57.66%
BERT fine-tuning	text	Transformer		73.92%
Our method v1	BERT pre-trained vectors	MLP	Cosine	65.92%
Our method v2 (+Domain Knowledge)	BERT pre-trained vectors + Knowledge implanting	MLP	Cosine	85.64%

Conclusions

• The proposed model using pre-trained BERT vectors and triplet loss is an efficient and accurate solution.

 The introduction of domain knowledge can improve accuracy for both supervised and unsupervised methods.

Large-scale graph mining and learning

Graph Representation Learning

Definition

Application

Challenge

- Large-Scale network: million nodes with Ten million edges
- Rich information
 - Node attributes
 - Edge attributes
 - Dynamic
 - Directed
 - Heterogeneous

EdgeProp

- Motivation
 - A research blind zone for edge attributes
 - Not enough research for heterogeneous network
- Contribution
 - A new message passing mechanism that allows edge information to propagate into node representation
 - A scalable realization of the proposed algorithm $h_{v}^{(k)} = \rho^{(k)}(h_{v}^{(k-1)}||h_{N(v)}^{(k)}) = \rho^{(k)}(h_{v}^{(k-1)}||\sum_{u \in N(v)} \phi^{(k)}(h_{u}^{k-1}||e_{uv}))$


```
Algorithm 1: Embedding Generation (i.e. forward
propagation) Algorithm
  input : Graph \mathcal{G}(\mathcal{V}, \mathcal{E});
                 input features \vec{x}_v, \forall v \in \mathcal{B};
                 edge features \vec{e}_{ij}, \forall (i, j) \in \mathcal{B};
                 depth K:
                 differentiable functions \rho, \phi (e.g. a MLP);
                 neighborhood sampling function
 \mathcal{N}_k: v \mapsto 2^N
  output: Vector representations \vec{z_v}, \forall v \in \mathcal{V}
   \mathcal{B}^{K} \leftarrow \mathcal{B}:
   for k = K \dots 1 do
          B^{k-1} \leftarrow \mathcal{B}^k:
         for u \in \mathcal{B}^k do
                B^{(k-1)} \leftarrow B^{(k-1)} \cup \mathcal{N}_k(u)
         end for
   end for
   \vec{z}_{v}^{0} \leftarrow \vec{x}_{v}, \forall v \in \mathcal{B}^{0};
  for k = 1...K do
         for v \in \mathcal{B}^k do
                \vec{z}_{\mathcal{N}(v)}^{(k)} \leftarrow \sum_{u \in \mathcal{N}(v)} \phi^{(k)}(\vec{z}_u^{(k-1)} || \vec{e}_{uv});
                \vec{z}_{v}^{(k)} \leftarrow \rho^{(k)}(\vec{z}_{v}^{k-1} || \vec{z}_{\mathcal{N}(v)}^{(k)});
         end for
   end for
  return \{\vec{z}_v^{(k)} \forall v \in \mathcal{V}\};
```

Tencent transaction dataset

Algorithm	Accuracy	Precision	recall	f1 measure
DeepWalk	0.6847	0.6648	0.6286	0.6462
Line	0.6841	0.6636	0.6293	0.6460
Logistic Regression	0.6822	0.6253	0.6621	0.6432
Random Forest	0.7767	0.7474	0.7490	0.7482
GBDT	0.7634	0.7284	0.7483	0.7382
GraphSAGE	0.8110	0.8138	0.8053	0.8095
EdgeProp (w/o nft. + incoming)	0.8303	0.8305	0.8330	0.8317
EdgeProp (w/o nft. + directed)	0.8365	0.8375	0.8399	0.8387
EdgeProp (w/ nft. + incoming)	0.8639	0.8633	0.8622	0.8627
EdgeProp (w/ nft. + directed)	0.8698	0.8686	0.8696	0.8690

Feature work

- Make use of time information
- Deal with situation without labels

Platform Support

Figure 1. Architecture of Angel's Graph Computing Module: PageRank as an Example

- Enables efficient data sharing (which is essential for complex graph computing) via Parameter Server
- Leverages performance by adopting PS' s computing power

Platform Support

Spark on Angel Spark GraphX

Figure 2. Performance Comparison of Angel and Spark GraphX on Benchmark Graph Mining Algorithms

1 Iter = 400

² Common Friends is tested on dataset with ~150 billion edges, while the other three algorithms are tested on dataset with ~1 billion vertices and ~10 billion edges

Thank you