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Abstract
In the past few years, numerous multi-view graph cluster-
ing algorithms have been proposed to enhance the clus-
tering performance by exploring information from multi-
ple views. Despite the superior performance, the high time
and space expenditures limit their scalability. Accordingly,
anchor graph learning has been introduced to alleviate the
computational complexity. However, existing approaches can
be further improved by the following considerations: (i)
Existing anchor-based methods share the same number of
anchors across views. This strategy violates the diversity
and flexibility of multi-view data distribution. (ii) Search-
ing for the optimal anchor number within hyper-parameters
takes much extra tuning time, which makes existing meth-
ods impractical. (iii) How to flexibly fuse multi-view an-
chor graphs of diverse sizes has not been well explored
in existing literature. To address the above issues, we pro-
pose a novel anchor-based method termed Flexible and Di-
verse Anchor Graph Fusion for Scalable Multi-view Clus-
tering (FDAGF) in this paper. Instead of manually tun-
ing optimal anchor with massive hyper-parameters, we pro-
pose to optimize the contribution weights of a group of
pre-defined anchor numbers to avoid extra time expenditure
among views. Most importantly, we propose a novel hybrid
fusion strategy for multi-size anchor graphs with theoreti-
cal proof, which allows flexible and diverse anchor graph fu-
sion. Then, an efficient linear optimization algorithm is pro-
posed to solve the resultant problem. Comprehensive exper-
imental results demonstrate the effectiveness and efficiency
of our proposed framework. The source code is available at
https://github.com/Jeaninezpp/FDAGF.

Introduction
Nowadays, many contrastive learning methods employ aug-
mented views to enhance the learning of original data (Yang
et al. 2022; Liu et al. 2022b). However, the data itself
can be represented from multiple views thanks to the im-
provement in data collection and feature extraction tech-
niques. Multi-view clustering (MVC) is an important un-
supervised learning method in machine learning and data
mining, which is based on the concept of integrating com-
plementary and diverse information across views (Nie, Cai,
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and Li 2017; Liu et al. 2018). Multi-view graph clustering
(MVGC) (Zhang et al. 2022b; Sun et al. 2021), multi-kernel
clustering (MKC) (Zhang et al. 2022a,c; Li et al. 2022) and
multi-view matrix factorization clustering (MVMFC) (Liu
et al. 2013; Zhao, Ding, and Fu 2017; Yang et al. 2020;
Zhang et al. 2021a) are three common solutions for MVC
task. Among them, MVGC methods aim at constructing one
or multiple similarity matrices (Cao et al. 2015; Li et al.
2019; Kang et al. 2020a). These approaches explore local or
global relationships between samples to establish connec-
tions across views. Despite the promising performance of
MVGC method, their capability to scale up is severely con-
strained by the high complexity. Therefore, it is essential to
design efficient algorithms to tackle large-scale MVC issues
in the current era of big data. Recently, researchers propose
the anchor-based MVGC approaches to alleviate the com-
plexity of traditional multi-view graph clustering (Li et al.
2015; Kang et al. 2020b; Li et al. 2020; Sun et al. 2021;
Wang et al. 2021; Zhang et al. 2021b). The basic goal of
these methods is to construct the anchor graph between an-
chors and the entire samples instead of constructing the full
graph. In this way, the time expenditures O(n3) is reduced
to O(n). For instance, Kang et al. use the pre-defined clus-
tering centers as the anchor to obtain the anchor graph for
each view independently. Sun et al. and Wang et al. further
incorporate anchor into the optimization framework and fi-
nally obtain a unified anchor graph across multiple views. Li
et al. provide a parameter-free and adaptive weighted fusion
framework to obtain a joint graph.

Although the anchor-based MVGC has improved the effi-
ciency of algorithms, it can still be enhanced in the following
ways. Firstly, current anchor-based MVGC approaches re-
quire all views to share the same number of anchors, which
violates the diversity principle in multi-view data distribu-
tion. In this case, the optimal number of anchors is deter-
mined by hyper-parameter traversal in a wide range for each
dataset, intensively degrading model efficiency and applica-
tion. Therefore, how to automatically choose the diverse an-
chor number for different views is worthwhile to investigate.
Secondly, the problem of multi-size anchor fusion brought
by the flexible number of anchors has not received enough
attention. Therefore, designing a flexible and scalable an-
chor fusion algorithm is an urgent need in MVGC.
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Figure 1: The framework of our proposed FDAGF algo-
rithm. For each view of data Xv , we provide diverse choices
of anchor (from A1

v to AR
v ), resulting in multiple flexible

sizes of anchor graphs {Z1
v , · · · , ZR

v }. Then, the importance
corresponding to each anchor choice w.r.t each view is auto-
matically learned to incorporate the fused anchor graph.

To address the above issues, we propose a novel anchor-
based multi-view graph clustering method in this paper,
termed Flexible and Diverse Anchor Graph Fusion for Scal-
able Multi-view Clustering (FDAGF). Figure 1 shows the
framework of the proposed method. Specifically, we offer
diverse choices for the number of anchors, resulting in di-
verse anchor graphs with flexible sizes for each view. The
weights across diverse choices of multiple views are auto-
matically determined via optimization based on the discrim-
ination of anchor graphs. Most significantly, we propose a
novel paradigm for fusing hybrid multi-size anchor graphs
based on rigorous theoretical analysis. Moreover, the linear
complexity of our proposed method, which inherits the ben-
efits of anchor strategy, also makes FDAGF applicable to
large-scale multi-view data. Compared with the state-of-the-
art MVC methods, extensive experiments demonstrate the
effectiveness and efficiency of our proposed FDAGF. Our
main contributions can be summarized as follows:
1. We propose to optimize the diverse weights of multi-

view multi-choice anchor graphs as opposed to manually
determining the ideal number of anchors through hyper-
parameter-traversal. In addition to avoiding searching for
optimal anchor numbers, optimizing the importance of
each choice on each view also allows for a deeper ex-
ploration of multiple view information, which naturally
enhances the clustering performance.

2. We present a hybrid multi-size anchor graph fusion
paradigm to obtain the unified fusion graph in this pa-
per. Compared to the current anchor graph fusion meth-
ods, our proposed strategy is more flexible and compati-
ble with the multi-view principle.

3. We design an alternating optimization algorithm to solve
the resulting optimization problem with linear complex-
ity about the number of samples. Extensive experimental
results demonstrate the superiority of our clustering per-
formance and running time.

Related Work
In this section, we review the rationale and literature of
anchor-based multi-view graph clustering methods. Then
the most relevant algorithms are introduced in detail. The
notations used in this paper are listed in Table 1.

Notation Description

n, k, V Number of samples, clusters and views
R Number of anchor choice
dv Feature dimension of v-th view

Xv ∈ Rdv×n Data matrix of v-th view
β ∈ RV×R Importance of choice on each view

Ar
v ∈ Rdv×mr Anchor matrix of r-th choice on v-th view

Zr
v ∈ Rmr×n Anchor graph of r-th choice on v-th view

Ẑr
v Normalized anchor graph

Sr
v ∈ Rn×n The full graph
M[:,j] The j-th column of matrix M

Table 1: Description of notations in this paper.

Anchor-based MVGC
Sampling techniques are widely employed in both academia
and industry due to the enormous data scale. It has also
been used for the existing multi-view spectral clustering (Li
et al. 2015) and multi-view subspace clustering (Kang et al.
2020b) in the field of multi-view graph clustering. Among
anchor-based MVGC methods, researchers choose a small
number of instances as anchors and then learn anchor graphs
between the anchors and original samples. By doing this, the
inefficient n× n affinity graph is replaced by the m× n an-
chor graph, where m is the number of anchor points. The
success of sampling shows that the sampling strategy con-
tributes to faster computation and storage while maintaining
equivalent clustering performance.

Recently, Kang et al. proposed a Large-scale Multi-view
Subspace Clustering in Linear Time (LMVSC) algorithm to
replace the self-expression of multi-view subspace cluster-
ing with anchor-samples expression, making it possible to
handle large-scale clustering scenarios. Sun et al. consider
that the anchors obtained by optimization are more represen-
tative than fixed anchors. They unified the individual anchor
learning with anchor graph optimization in one framework.
Wang et al. simplify the above method to a parameter-free
version, further improving the clustering performance and
efficiency. Based on it, Liu et al. propose a one-pass ap-
proach to directly obtain the clustering labels by imposing
graph connectivity constraints on the anchor graph. More-
over, Li et al. propose an anchor sampling strategy for con-
structing independent anchor graphs and then fusing them
adaptively into the consensus graph.
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Large-scale Multi-view Subspace Clustering in
Linear Time (LMVSC)
Kang et al. make the first effort at anchor-based MVGC.
Firstly, they perform k-means to obtain the view-specific
anchors and fix them. Anchor graphs between anchors and
all samples on each view are constructed independently. Fi-
nally, they execute Singular Value Decomposition (SVD) on
the concatenated graph to obtain the common representation
and then execute k-means to get the final clustering result.
The formulation of LMVSC can be written as:

min
Zv

V∑
v=1

∥Xv −AvZv∥2F + α∥Zv∥2F

s.t. 0 ≤ Zv, (Zv)
⊤1 = 1,

(1)

where Xv ∈ Rdv×n and Zv ∈ Rm×n. α is a trade-off pa-
rameter. m refers to the number of anchors, which is a hyper-
parameter and remains the same across views. Zv can be ob-
tained by solving the Quadratic Programming (QP) problem.
The common representation can be obtained by computing
SVD of the concatenated matrix Z ∈ Rmv×n.

In general, LMVSC provides a learning framework for
anchor-based MVGC, but it can still be improved by the
following considerations. The anchor is pre-generated with-
out optimization, which leads to the separation of anchor
learning and clustering. LMVSC treats each view identically
and lacks consistent and diverse information across multiple
views. Based on this framework, we propose a more flexible
and diverse anchor fusion paradigm in the next section.

Methodology
We begin this section by defining the anchor-based MVGC
and then explain how to build our model step by step.
Definition 1 (Anchor-based MVGC) Given a multi-view
dataset X = {Xv}Vv=1 with n samples, V views and k clus-
ters. For the v-th view, Xv ∈ Rdv×n has dv dimensional fea-
ture. The anchor matrix of v-th view is Av ∈ Rdv×m, where
m is the number of anchors. Correspondingly, the anchor
graph of v-th view is Zv ∈ Rm×n, depicting the relation-
ships between m anchors and original n instances.

Multi-view Diversity
According to the generally recognized multi-view principle
(Yang and Wang 2018), the distribution of multi-view data
has the property of complementary and consistency. The tra-
ditional anchor-based MVGC framework, as illustrated in
the Definition 1, requires multiple views to share the same
number of anchors, which not only violates the complemen-
tary principle but is also time-consuming when searching for
the optimal anchor number. Considering this, the framework
in Eq. 1 can be upgraded to search for the ideal number of
anchors independently on each view. The difference is that
the dimension of Zv is mvoptimal × n instead of m× n. How-
ever, searching for the ideal number of anchors for each view
takes more time than searching for a common optimal num-
ber. Therefore, it is worthwhile to explore how to choose the
self-adaptable number of anchors for different views while
maintaining the diversity of multiple views.

Generate Multi-size Multi-view Anchor Graph
Compared to existing methods that require a range of hyper-
parameters to find an optimal dataset-related anchor number,
we consider providing a group of anchors with the diverse
number for each view to approximate the optimum. In this
manner, the hyper-parameter traversal for optimal number is
avoided, and the diversity of each view is preserved.

Specifically, we offer R number of anchor choices for
each view. Hence the anchor matrices can be expressed
by {{Ar

v}Vv=1}Rr=1, where Ar
v ∈ Rdv×mr , mr is the an-

chor number of the r-th choice. Correspondingly, the re-
sultant flexible graphs with diverse sizes can be written as
{{Zr

v}Vv=1}Rr=1, where Zr
v ∈ Rmr×n. Taking the i-th view

as an example, the corresponding anchor matrices and an-
chor graphs can be formulated as {A1

i , A
2
i , · · · , AR

i } and
{Z1

i , Z
2
i , · · · , ZR

i }. Consequently, the proposed flexible and
diverse anchor graph fusion model for multi-view clustering
can be formulated as follows:

min
Ar

v,Z
r
v ,β

V∑
v=1

R∑
r=1

βr
v

(
∥Xr

v −Ar
vZ

r
v∥2F + α∥Zr

v∥2F
)
+ λ∥β∥2F

s.t. (Ar
v)

⊤
Ar

v = I, Zr
v ≥ 0, (Zr

v)
⊤1 = 1,β1 = 1,

(2)

where β ∈ RV×R and βr
v indicates the importance of the r-

th anchor choice on v-th view. α and λ are the trade-off pa-
rameters. The soft assignment of the automatic weight learn-
ing framework benefits from the regularization term of β.
When λ = 0, the framework is degraded to a trivial solution
of β with only one choice chosen.

Flexible Multi-view Anchor Graph Fusion
Once we obtain multi-size anchor graphs across multiple
views, the next crucial problem still remains to be explored:
how to fuse multiple anchor graphs with diverse sizes?

Traditionally, the flexible and diverse anchor graphs Zr
v ∈

Rmr×n could restore the full n × n affinity matrix by ap-
plying Eq. (3) according to the landmark spectral clustering
and anchor graphs (Liu, He, and Chang 2010). The resultant
Sr
v ∈ Rn×n is a doubly-stochastic matrix where the sum of

each column and each row is one.
Sr
v = Zr

v
⊤Σ−1Zr

v , where Σ = diag(Zr
v1). (3)

By setting Ẑr
v = Σ− 1

2Zr
v , we can obtain the full

graph Sr
v = Ẑr

v

⊤
Ẑr
v , and the adaptive fusion graph S =∑V

v=1

∑R
r=1 β

r
vS

r
v . The common solution for MVGC is to

conduct spectral clustering on S and then feed the spectral
embedding into k-means to produce the clustering result.
However, performing SVD on a n × n matrix necessitates
O(n3) time complexity, which is exactly why most MVGC
algorithms are unsuitable for large-scale data. In this paper,
instead of constructing Sr

v and S, we propose an alterna-
tive strategy to compute the k right singular vectors of the
concatenated anchor graph Z in Eq. (4) as the common em-
beddings, according to Proposition 1 (Affeldt, Labiod, and
Nadif 2020; Kang et al. 2020b).

Z =

[√
β1
1 Ẑ

1
1 ;
√
β2
1 Ẑ

2
1 ; · · · ;

√
βR
V Ẑ

R
V

]
. (4)
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Proposition 1 Given similarity matrices {{Sr
v}Vv=1}Rr=1

and the adaptive fused graph S =
∑V

v=1

∑R
r=1 β

r
vS

r
v .

Each of Sr
v can be expressed by Sr

v = Ẑr
v

⊤
Ẑr
v . Let Z =[√

β1
1 Ẑ

1
1 ;
√
β2
1 Ẑ

2
1 ; · · · ;

√
βR
V Ẑ

R
V

]
, Z ∈ R

kV R(R+1)
2 ×n. As-

suming the SVD of Z is Z = UΛH⊤, where U⊤U =
I,H⊤H = I . We can conclude that the eigenvectors of S
equal to the right singular vectors of Z.

Proof 1 Given the current circumstances, we can obtain

S =
V∑

v=1

R∑
r=1

βr
vS

r
v =

V∑
v=1

R∑
r=1

βr
vẐ

r
v

⊤
Ẑr
v

= Z
⊤
Z = (UΛH⊤)⊤(UΛH⊤)

= HΛ2H⊤.

Thereby the eigenvectors of S equal to the right singular
vectors of Z.

Since kV R(R+1)
2 ≪ n in most large-scale scenarios, we

conduct SVD decomposition on Z instead of eigenvalue de-
composition on S, which significantly reduces the time ex-
penditure. Additionally, avoiding the construction of n × n
Sr
v and S greatly decreases the cost of storage.

Optimization and Analysis
Optimization
To solve the optimization problem in Eq. (2), we design a
three-step alternating algorithm.

Update Ar
v Fixing other variables, the optimization prob-

lem of Ar
v can be formulated as

min
Ar

v

∥Xv −Ar
vZ

r
v∥2F , s.t. (Ar

v)
⊤
Ar

v = I. (5)

By expanding the Frobenius norm into trace form, the prob-
lem of optimizing Ar

v is

max
Ar

v

Tr
(
(Ar

v)
⊤
Br

v

)
, s.t. (Ar

v)
⊤
Ar

v = I, (6)

where Br
v = Xv (Z

r
v)

⊤. The optimum of Ar
v can be obtained

by computing Ar
v = UbV

⊤
b , where Ub and Vb are the left and

right singular matrices of Br
v , respectively.

Update Zr
v When optimizing variable Zr

v , for each view
and each anchor choice, anchor graph Zr

v can be rewritten
as the following trace form,

min
Zr

v

Tr
(
(1 + α) (Zr

v)
⊤
Zr
v − 2 (Zr

v)
⊤
(Ar

v)
⊤
Xv

)
,

s.t. (Zr
v)

⊤
1 = 1, Zr

v ≥ 0.

(7)

Since (Ar
v)

⊤
Xv is a constant when optimizing Zr

v , mini-
mizing Eq. (7) is equivalent to

min
Zr

v

∥∥∥∥Zr
v − 1

1 + α
(Ar

v)
⊤
Xv

∥∥∥∥2
F

, s.t. (Zr
v)

⊤
1 = 1, Zr

v ≥ 0.

(8)

Denoting E = Zr
v and H = 1

1+α (Ar
v)

⊤
Xv , Eq. (8)

can be solved by the closed-form solution (Nie, Wang, and
Huang 2014):

E[:,j] = max
(
H[:,j] + ηj1, 0

)
,where ηj =

1 +H⊤
[:,j]1

n
.

(9)

Update β Fixing other variables, the optimization prob-
lem of β can be formulated as

min
β

R∑
r=1

βr
vξ

r
v + λ(βr

v)
2, s.t. β1 = 1, (10)

where ξrv = ∥Xr
v −Ar

vZ
r
v∥2F +α∥Zr

v∥2F and βr
v refers to the

element in v-th row and r-th column of β. β[v,:] denotes v-
th row of β, representing the weights of v-th view. For each
β[v,:], we obtain the following problem,

min
β[v,:]

∥∥∥β[v,:] − ϑv

∥∥∥2
2
, s.t. β[v,:]1 = 1, (11)

where ϑv = − 1
2λ [ξ

1
v , ξ

2
v , · · · , ξRv ] ∈ R1×R. Eq. (11) is the

same problem as in Eq. (8) and can also be solved with a
closed-form solution.

The entire procedures of our proposed FDAGF algorithm
are summarized in Algorithm 1.

Algorithm 1: FDAGF algorithm
Input: Multi-view data {Xv}Vv=1, cluster k, choice R.
Parameter: Trade-off parameter α and λ.
Output: Perform k-means on H .

1: Initialize Ar
v , Zr

v and β.
2: while not convergent do
3: Update Ar

v by solving Eq. (6).
4: Update Zr

v by solving Eq. (8).
5: Update β by solving Eq. (11).
6: end while
7: Construct Z according to Eq. (4).
8: Return The right singular vectors H of the concate-

nated matrix Z.

Analysis and Extensions
Computational Complexity: The computational complex-
ity of our model during optimization involves three parts.
Supposing the r-th choice number is mr, the first step
to update Ar

v requires O
(
dvm

2
r

)
. Updating Zr

v needs
O
(
nm2

r

)
, and updating β requires O (dvmrn). For all

of the views and choices, our model achieves total
O
(∑V

v=1

∑R
r=1(dvm

2
r +m2

rn+ dvmrn)
)

computational
complexity during each iteration. The post-processing of
SVD and k-means are also linear complexity w.r.t n. Conse-
quently, we achieve a linear computational complexity with
respect to the number of instances, making it suitable for
large-scale clustering tasks.

Convergence: This paper proposes an alternative opti-
mization algorithm by updating one variable with other vari-
ables fixed. Since each sub-optimization can achieve its op-
timal solution, according to (Bezdek and Hathaway 2003),
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our algorithm is guaranteed to decrease monotonously dur-
ing the iteration and converges to a local minimum.

Single-view extension: The proposed algorithm can be
easily extended to the single-view scenario by setting v = 1,
which means it can still generate diverse and informative
anchor graphs for a single view. Under the setting of single-
view clustering, our proposed method could provide a flexi-
ble framework to explore single-view information from dif-
ferent perspectives to form “pseudo” multi-view clustering.

Experiment
Datasets and Baselines
Table 4 lists ten widely used public MVC datasets, includ-
ing yaleA1, MSRCV1 (Winn and Jojic 2005), Flower172,
UCI-Digit3, Caltech1014, Reuters, VGGFace5, CIFAR1006,
EMNIST7, YTF20 (Huang, Wang, and Lai 2022).

No. Dataset Sample View Cluster

1 yaleA 165 3 15
2 MSRCV1 210 6 7
3 Flower17 1360 7 17
4 UCI-Digit 2000 3 10
5 Caltech101 9144 5 102
6 Reuters 18758 5 5
7 VGGFace 36287 4 100
8 CIFAR100 60000 4 99
9 YTF20 63896 4 20

10 EMNIST 280000 4 9

Table 4: Description of Datasets.

Ten state-of-the-art MVC methods are compared, includ-
ing Multi-view k-means Clustering on Big Data (RMKM)
(Cai, Nie, and Huang 2013), Parameter-free Auto-weighted
Multiple Graph Learning (AMGL) (Nie et al. 2016), Flexi-
ble Multi-View Representation Learning for Subspace Clus-
tering (FMR) (Li et al. 2019), Partition Level Multi-view
Subspace Clustering (PMSC) (Kang et al. 2020a), Bi-
nary Multi-View Clustering (BMVC) (Zhang et al. 2018),
Large-scale Multi-view Subspace Clustering in Linear Time
(LMVSC) (Kang et al. 2020b), Scalable multi-view sub-
space clustering with unified anchors (SMVSC) (Sun et al.
2021), Fast Multi-View Clustering via Nonnegative and Or-
thogonal Factorization (FMCNOF) (Yang et al. 2020), Fast
Parameter-free Multi-view Subspace Clustering with Con-
sensus Anchor Guidance (FPMVS) (Wang et al. 2021),
Multi-view clustering: a Scalable and Parameter-free Bipar-
tite Graph Fusion Method (SFMC) (Li et al. 2020). Note
that BMVC, LMVSC, SMVSC, FMCNOF, FPMVS-CAG,
and SFMC are designed for large-scale MVC scenarios.

1http://vision.ucsd.edu/content/yale-face-database
2https://www.robots.ox.ac.uk/vgg/data/flowers/17/
3https://jamesmccaffrey.wordpress.com/2020/10/26/
4https://authors.library.caltech.edu/7694/
5https://www.robots.ox.ac.uk/vgg/data/vgg face/
6http://www.cs.toronto.edu/kriz/cifar.html
7https://www.nist.gov/itl/products-and-services/emnist-dataset

Experiment Setup
For a fair comparison, all the involved hyper-parameters are
carefully tuned following the original settings. For our pro-
posed model, α varies in [10−5, 10−1, 101, 103], λ varies
in [101, 103, 105]. The number of anchor choices R is sim-
ply set to 4, which means that the number of anchors
ranges from k to 4k, where k is the number of clus-
ters. To mitigate the randomness caused by k-means in
the initialization and the post-processing, we repeated 50
times k-means for all compared methods to report the av-
erage results. We apply four metrics, including Accuracy
(ACC), Normalized Mutual Information (NMI), Purity, and
Fscore, to fully assess the clustering quality. Larger val-
ues indicate better clustering performance. To assess the
efficiency of all approaches, we record the running times
of the main algorithm. The reported results in the follow-
ing section are the optimal ACC across all parameters and
its corresponding NMI, Purity, and running time. Besides,
our experiments are conducted on a computer with MAT-
LAB R2020b and an Intel Core i7-7820X CPU and 64GB
RAM, MATLAB 2020b (64-bit). Our code is released at
https://github.com/Jeaninezpp/FDAGF.

Clustering Performance
The clustering performance of ten compared methods and
ours on eight benchmark dataset are reported in Table 2 and
Table 3. In Table 3, we primarily discuss approaches ded-
icated to large-scale data since the other compared algo-
rithms typically suffer from “out-of-memory” or need ex-
tensive running time. We have the following observations:

• In Table 2, our proposed model achieves the best perfor-
mance on small-size and medium-size datasets no matter
what the evaluation metric is. Especially, our model out-
performs the second best method by large margins with
13.03%, 10.95%, 10.37%, and 2.35% of ACC on the four
datasets, respectively.

• Furthermore, Table 3 reports clustering performance of
seven large-scale oriented methods on six large-scale
datasets. We can observe that the clustering performance
of the proposed FDAGF is superior to the state-of-
the-art competitors w.r.t ACC, demonstrating its strong
multi-view clustering capabilities. Moreover, our model
achieves considerable improvements on other metrics.

• From these two tables, we can conclude that our algo-
rithm achieves the best or comparable performance com-
pared with the full-graph MVC methods and anchor-
graph MVC methods. Especially, our model outperforms
LMVSC by 44.24%, 18.10%, 10.37% and 15.55% ac-
curacy on four small and medium size datasets, and by
11.65%, 8.32%, 2.79%, 1.53%, 2.52% and 7.66% on the
large-scale datasets. The significant performance differ-
ence between ours and LMVSC demonstrates the effec-
tiveness of our flexible anchor fusion strategy.

Furthermore, we restore the full graph Sr
v of each Zr

v to
visualize the effect of flexible anchor graph fusion. Taking
dataset uci-digit as an example, Figure 2(a) is the restored
full graph Sr

v of each anchor choice over each view. Figure
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Dataset Metric RMKM AMGL FMR PMSC BMVC LMVSC SMVSC FMCNOF FPMVS SFMC Proposed

yaleA

ACC 0.5939 0.6341 0.6634 0.7606 0.3455 0.4485 0.7152 0.2303 0.7492 0.4242 0.8909
NMI 0.6791 0.6988 0.7582 0.8626 0.4307 0.5126 0.8039 0.3023 0.8161 0.5057 0.9161

Purity 0.6182 0.6573 0.6832 0.7873 0.3758 0.5939 0.7307 0.2303 0.7530 0.4242 0.9273
Fscore 0.4766 0.4122 0.5762 0.7043 0.1919 0.3010 0.6450 0.1842 0.6886 0.2753 0.8399

MSRCV1

ACC 0.7143 0.7644 0.7748 0.4745 0.2667 0.7190 0.7051 0.4714 0.7195 0.6048 0.9000
NMI 0.6303 0.7765 0.6948 0.3429 0.0829 0.6077 0.6201 0.3842 0.6569 0.6023 0.8142

Purity 0.7476 0.8045 0.7901 0.4991 0.2714 0.7190 0.7151 0.5048 0.7233 0.6286 0.9000
Fscore 0.5998 0.7028 0.6676 0.3405 0.1601 0.5558 0.5931 0.3385 0.6155 0.5243 0.8128

Flower17

ACC 0.2324 0.0970 0.3343 0.2082 0.2699 0.3375 0.2713 0.1743 0.2599 0.0757 0.4412
NMI 0.2207 0.1025 0.3065 0.1913 0.2562 0.3675 0.2578 0.1468 0.2581 0.0787 0.4319

Purity 0.2449 0.1076 0.3474 0.2220 0.2941 0.3985 0.2788 0.1757 0.2638 0.1029 0.4963
Fscore 0.1435 0.1149 0.2009 0.1233 0.1661 0.2255 0.1753 0.1393 0.1729 0.1094 0.2928

uci-digit

ACC 0.9115 0.7776 0.7247 0.7092 0.7115 0.7795 0.8261 0.5485 0.8189 0.7635 0.9350
NMI 0.8448 0.8388 0.7033 0.7240 0.6924 0.6735 0.7784 0.5717 0.7876 0.8333 0.8670

Purity 0.9115 0.8071 0.7530 0.7397 0.7290 0.7795 0.8336 0.5625 0.8208 0.7685 0.9350
Fscore 0.8361 0.7503 0.6455 0.6417 0.6250 0.6338 0.7558 0.5040 0.7525 0.7528 0.8743

Table 2: Clustering performance comparison (ACC, NMI, Purity, Fscore) of ten MVC methods on four small-size or medium-
size datasets. The top performance is highlighted in red bold and the second best is in underlined blue.

2(b) is the visualization of the diverse weights β. Each block
represents the importance of the corresponding choice in the
view. Figure 2(c) is the restored full graph by computing
Z

⊤
Z. We can observe the structure on each view and each

choice is varied in Figure 2(a). However, after our flexible
fusion strategy, the fusion graph reconstructed by S = Z

⊤
Z

shows more clear clustering structure than in Fig. 2(a) and
therefore better clustering performance.
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Figure 2: Visualization of anchor graph fusion on uci-digit.

Running Time
The total time to obtain the final optimum results consists of
the tuning time of the hyper-parameters and the running time
under the optimum parameters. Due to space constraints, we
visualize the running time w.r.t the optimum parameters on
eight datasets in Fig. 3 . As mentioned in computational
complexity, our model achieves linear computational com-
plexity. Experimental results further show that our model
requires a much shorter running time compared with most
compared baselines. Although our model costs more run-
ning time than BMVC, LMVSC, SMVSC and FMCNOF on
large-scale datasets, our model does not require tuning the
number of anchors to achieve optimal results. In brief, our
FDAGF does not incur significant tuning time for finding
the optimal number of anchors and yet attains superior per-
formance with comparable running time, demonstrating the
advantages of our methods regarding time and performance.
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Figure 3: Comparison of relative logarithm running time of
ten methods on eight datasets. The y axis is scaled by log
to mitigate the gap between methods. Missing bars indicate
that the method suffered an “out-of-memory” error.

Convergence and Sensitivity
Figure 4(a) depicts the evolution of objective function during
the iteration on MSRCV1 and EMNIST. Clearly, from Fig-
ure 4(a), the objective monotonically decreases and quickly
converges within 20 iterations, which experimentally veri-
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Dataset Metric BMVC LMVSC SMVSC FMCNOF FPMVS SFMC Proposed

Caltech101

ACC 0.2588 0.1553 0.1427 0.1507 0.2591 0.0876 0.2718
NMI 0.4213 0.3196 0.2822 0.1309 0.3438 0.0002 0.4479

Purity 0.3915 0.1949 0.2707 0.1618 0.3389 0.0876 0.3463
Fscore 0.2997 0.1039 0.1217 0.0773 0.2009 0.0548 0.2442

Reuters

ACC 0.5285 0.5287 0.5778 0.3683 0.4458 0.2513 0.6119
NMI 0.2651 0.3316 0.3641 0.1706 0.2850 0.1280 0.4292

Purity 0.5647 0.5803 0.6366 0.4042 0.5358 0.3540 0.6898
Fscore 0.4435 0.4433 0.4682 0.3521 0.3906 0.3390 0.4754

VGGFace

ACC 0.0617 0.0609 0.079 0.0198 0.0347 0.0602 0.0888
NMI 0.1426 0.1192 0.1480 0.0581 0.1233 0.0091 0.1627

Purity 0.0715 0.0702 0.0855 0.0350 0.0633 0.0209 0.1298
Fscore 0.0277 0.0247 0.0345 0.0239 0.0314 0.0212 0.0385

CIFAR100

ACC 0.0832 0.0953 0.0834 0.0366 0.0729 0.0118 0.1106
NMI 0.1505 0.1540 0.1440 0.0704 0.1362 0.0053 0.1836

Purity 0.0933 0.1090 0.0893 0.0368 0.0764 0.0126 0.1864
Fscore 0.0437 0.0369 0.0447 0.0256 0.0378 0.0198 0.0448

YouTubeFace20

ACC 0.5739 0.6726 0.6713 0.3861 0.6308 0.3554 0.6978
NMI 0.7065 0.7678 0.7836 0.4545 0.7430 0.3982 0.7894

Purity 0.6276 0.7340 0.7240 0.4034 0.6492 0.3632 0.7812
Fscore 0.4904 0.6243 0.6168 0.2584 0.5781 0.2633 0.6009

EMNIST digits

ACC 0.6899 0.6574 0.5705 0.3650 0.6224 N/A 0.7340
NMI 0.7008 0.5986 0.5250 0.2836 0.5347 N/A 0.6543

Purity 0.7138 0.6615 0.5763 0.3690 0.6230 N/A 0.7478
Fscore 0.6138 0.5515 0.4696 0.2564 0.4929 N/A 0.5888

Table 3: Clustering results of seven large-scale oriented methods on six large-scale datasets. The best result is highlighted in
red bold and the second best in underlined blue. “N/A” refers to suffering from an “out-of-memory” error on our device.

fies the convergence of sour proposed model. To investigate
the parameter sensitivity study of the involved parameter λ
and α, Fig. 4(b) plots the results by grid search on MSRCV1
and EMNIST. We can observe that performance is relatively
stable over a given range of parameters.
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Figure 4: The convergence and parameter sensitivity experi-
ments on dataset MSRCV1 and EMNIST.

Conclusion
In this paper, we propose a flexible and diverse anchor graph
fusion framework to alleviate the expenditures of time and
space for large-scale multi-view clustering. We consider op-
timizing a set of anchor graphs with diverse sizes instead
of manually searching for the optimal parameter of anchor
numbers. Besides, the diverse weights of multi-choice over
multi-view are automatically adjusted, which increases the
significance of the high-quality anchor graph in hybrid fu-
sion. Then a novel hybrid multi-size anchor graph fusion
paradigm is presented to fuse the various size of anchor
graphs. Additionally, our proposed method establishes a
simple but effective connection between single-view cluster-
ing and multi-view clustering. Extensive experiments verify
the effectiveness and efficiency of our proposed FDAGF.
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